
CHAPTER 5  “NMR HOMONUCLEAR DIPOLAR RELAXATION
THEORY: ANISOTROPIC MOLECULAR TUMBLING”
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5.1  Summary

This chapter is an introduction for chapters 6-7, both of which utilize the theories

discussed here.  Presented is a treatment of nuclear magnetic resonance (NMR) dipolar

relaxation theory for homonuclear interactions for both isotropic and anisotropic

molecular tumbling.  Methods are also presented for using these theories to simulate the

nuclear Overhauser effect (NOE).

5.2  Introduction

NMR is a powerful spectroscopic technique for studying molecular systems.  Data

from NMR spectroscopy can give a wealth of information about structure and dynamics.

In recent years, this technique has become a useful tool for molecular biochemists in

determining the three dimensional structures of biomolecules, such as proteins and

nucleic acids.

Measurement of NOE in NMR spectroscopy can be used to calculate the distances

between nuclei to determine the three-dimensional structures of molecules.  NOE is

derived from through-space dipolar relaxation that is induced by time-dependent

fluctuating magnetic fields and is dependent on the distance between two dipoles.  For

solution-state NMR, these fluctuations mainly result from molecular rotational diffusion

spinning the nuclear dipole moments that have aligned with a strong external B0 magnetic

field.  The current theories and practices in biomolecular structure determination often

make the assumption that an isotropic rotation model can adequately describe this

molecular rotational diffusion.  This assumption is not valid for extended shape
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biomolecules such as long DNAs, which are better described as having two rotational

diffusion rates, one for the long axis and one for the short axis.

The effect of the anisotropic rotation is examined in this chapter theoretically in

terms of the effect on the NOE and its interpretation in distance calculations.

5.3  Homonuclear NMR relaxation theory

As mentioned earlier, the NOE is a through-space dipolar relaxation process

between magnetically active nuclei.  The theories behind NMR relaxation (Abragam &

Pound, 1953; Solomon, 1955) will be developed in this section for the special case of two

rigid, isolated spins.  The concept rate matrix treatment will be decribed, which allows

for later application of these theories to multi-spin systems, with coupled relaxation

properties.

Figure 5. 1  Two magnetic nuclei placed in an external B0 field

Consider two nuclei (as shown in figure 5.1), A and B, that have an inherent

magnetic dipole moment u, which have been placed in a strong external magnetic field

B0.  The magnetic dipole moment will precess under the torque induced by the B0 field at

the nuclei’s characteristic Larmor frequency given by ω0 = -γB0 (γ is the gyromagnetic

ratio for that spin, with a value of 26.7520x107 rad T-1 s-1 for proton).  The net magnetic

moment of the precession will lie parallel to the B0 field (defined as the z-axis) and is
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represented by the dotted arrow in figure 5.1.  The energy for the interaction between the

magnetic dipole and the external magnetic field is given by E(m) = -γB0 h m, where the

allowable values for the quantum number m are +I, (+I-1),… , (-I+1), -I.  For spins with

a quantum number I= ½ (such as the biologically relevant 1H, 13C and 15N nuclei), m=

+½ or –½ which gives the allowable energies for the spin to be proportional to h½± .

These energies are abbreviated as α and β, respectively.

Thus, the energy of the two spin system can be described as one of four possible

energy states (αα, αβ, βα or ββ) and the changes in energy of the system are described

by the energy diagram shown in figure 5.2 below.
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Figure 5. 2  Energy diagram for two nuclei of spin ½

It is these transitions between energy states that give rise to all of NMR relaxation

theory.  The rate of a transition occurring between any of the above energy states is given

by the function W, as shown in figure 5.2.  The phenomenon of dipolar relaxation occurs

because of time-dependent fluctuations in the magnetic field surrounding a nucleus.

These fluctuations can arise from a number of molecular properties, such as molecular
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tumbling in solution, dynamical motions between nuclei or librational atomic motions.

For the simple case of a rigid two-spin system, the magnetic field fluctuations are

completely described by the molecular tumbling, as shown in the figure below.

Figure 5. 3  Time-dependent magnetic field fluctuations due to molecular rotation

A complete description of NMR dipolar relaxation thus requires an accurate

mathematical description of the frequencies of these magnetic field fluctuations.  The

frequency domain function used for this purpose is known as the “spectral density

function” and can be derived from Brownian motion theory for particles.

5.3.1  The spectral density function for isotropic rotation

Bloembergen, Purcell and Pound (1948) first described the spectral density

function for isotropic motion.  They used a model of a randomly orienting internuclear

vector that is attached to a sphere undergoing isotropic rotational diffusion in a

continuous medium.  This model is similar to that developed by Debye (1929) for

dielectric relaxation.  Full mathematical treatments on the derivation of this spectral

density function have been well reviewed (Solomon, 1955; Ernst, et al., 1987; Hennel &

Klinowski, 1993; Schmidt-Rohr & Spiess, 1994) and will not be presented here.  It is the
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intention of this section to give a qualitative description of the concepts involved in

molecular orientation mathematics.

The mathematical description of isotropic molecular reorientation involves three

functions, position, f(t), correlation, g(t), and spectral density J(ω).  A graphical

representation of these three functions is shown below,

Figure 5. 4  Functions of molecular reorientation

The position function is simply a measure of motional movement as a function of

time for a single particle in a molecule.  If this motion is due to Brownian thermal

movements, as shown above, f(t) will appear to be random.  However, the ensemble

average of the position of many particles will be described by an exponential decay,

)/exp()()0()( ctttfftg −== . 5.1

This ensemble average is called the correlation function, with the time constant for the

decay, tc, defined as the “correlation time”.  g(t) is a probability function that describes

the chances of finding a particle near the original position, f(0), in the ensemble, and has

been described as a measure of the ‘position memory’ of a particle.  With increasing time
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this probability diminishes as the positions of particles become less correlated to their

starting positions f(0).

The spectral density function is the frequency domain representation of this

correlation function, and as such they are mathematically interconvertable by the Fourier

transform, FT,
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5.3.2  Transition rates

With a mathematical definition of the spectral density function, the energy state

transition rates can be expressed as functions of JAB by the Solomon equations (Solomon,

1955) (assuming ω0A=ω0B≡ω, a homonuclear interaction),
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The derivation of these expressions comes from perturbation theory and the Hamiltonian

of the motion of the particles.  Notice that the Solomon equations include a “rate”

constant qAB, which is derived from the coulombic interaction of two dipoles, and is

defined as,
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The r-6 term assumes that there are no distance fluctuations between the nuclei AB.  If

fluctuations do exist, then a more complex definition of r would be contained in the

spectral density function JAB.  The rate constant is often conveniently represented as

56.9·r-6 (in units of s-1 ns-1 Å-6) (note the s-1 and ns-1 component, see appendix 5.7.1 for

the derivation and dimensional analysis).

The time dependent change of population (dN) of any of the four energy states

shown in figure 5.2 can be calculated by multiplying the appropriate population (N) by

the transition rate, which can be positive or negative depending on whether it is adding or

removing magnetization.  This is shown by the following equations,
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The experimentally observable magnetization, Iz, will be the difference between the

populations of the α and β energies for each spin A or B,
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K is a normalization constant.  Substitution of equations 5.8-5.11 into 5.12 and 5.13 gives

(see appendix 5.7.4 for the algebra) equations 5.14 and 5.15,
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These equations show that for spin A, magnetization is taken away at a rate of

-(W2+2W1B+W0) and is transferred to spin B at a rate of (W0-W2).  These values have

been given special names and symbols,
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Where ρ is denoted the “spin-lattice relaxation” rate and σ is denoted the “cross-

relaxation” rate.  Mutual energy coupling between the two spins occurs in the cross-

relaxation, or “spin-flip” transitions (see figure 5.2).  It is this cross-relaxation term that

gives rise to the nuclear Overhauser effect.  Graphical representation of these relaxation

parameters between spins A and B is shown below.

Figure 5. 5  The NMR relaxation parameters σσ and ρρ
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The cross-relaxation rate, σΑΒ, can now be expressed in term of the spectral

density function.  Notice that ωoA ≈ ωoB for nuclei of the same element (protons, for

instance) to give,
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Expansion of this equation with the definition of the isotropic rotation spectral density

function, eq. 5.2, gives,
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This is then a complete description of the cross-relaxation rate of any rigid,

isotropically rotating spin pair.  Often this equation simplified further by making the

assumption that we will only consider large, slowly rotating molecules (tc >> 1/2ω, the

slow motion limit), which causes the 6J(2ω) term to approach zero, leaving,
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However, a plot of the transition probability functions with increasing tc values

(as can be seen in figure 5.6) demonstrates that this assumption may not be completely

valid for the size biomolecules (with tc between 1 and 10 ns) studied here.  There may be

a significant contribution to the cross-relaxation from the W2 transition, and thus eq. 5.20

is the preferred definition of σAB.

Similarly, the value of ρA can be expanded in terms of this spectral density

function by combining equation 5.16 with 5.3, 5.4, 5.5, 5.6 and 5.7,
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Figure 5.6  Two-spin energy transition rates

Transition rates for the energy diagram (fig 5.2) have been calculated using W0=0.5qJ(0),
W1=3qJ(2ω0) and W2=0.75qJ(ω0), substituting the spectral density function for isotropic
rotation.  The script “W.pl” (see Chapter 7) was written for this purpose.  A range of
values for tc were plotted, assuming a 500 MHz NMR spectrometer (ω0 = 500x106 s-1).
The top graph is the actual values for each W function, while the lower graph shows the
percentage contribution of each transition rate.  For the size DNA molecules used in these
studies, the tc values calculated ranged from 2 to 25 ns, and is represented by the vertical
dotted lines, notice that for cross-relaxation, (W0-W2) one cannot make the assumption
that the W2 term is negligible.
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5.3.3  The relaxation rate matrix

These two relaxation processes can be followed with the use of a 2x2 “relaxation”

or "rate" matrix, R, of form (Keepers & James, 1984; Ernst, et al., 1987) (see appendix

5.5.2 for the derivation of the rate matrix from chemical exchange theory),

BBA

ABA

ρσ
σρ

=R . 5.23

The advantage of using the rate matrix for representing the relaxation processes is that it

offers a convenient method of multiple (more than two) spin coupled relaxation.  Dipolar

relaxation in NMR often involve many spins that are in close proximity to each other, as

shown below in figure 5.7 for the H6-H2’ protons in A-form RNA.

Figure 5.7  Multiple spin coupling in nucleic acids
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The H6-H2' distance is important in nucleic acid structure determination because

it is one of the few distance restraints which interconnects adjacent nucleotides in

standard helical regions of the structure.  Besides the two protons of interest, there are

five other protons within 3.5Å of the pair.  It is important that the distance calculations

used to determine RNA structure take into account these multiple spin partners.

The rate matrix is a general method of describing any number of coupled

relaxation rate processes, and as such it can be expanded to include more spins.  The

expanded rate matrix allow for all these additional rate processes to be accounted for

simultaneously, and is given by,
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with the more general definitions for ρ and σ,
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The T1, or longitudinal, relaxation time is a measure of the rate at which the z

component of the magnetization returns to the equilibrium state.  It can be calculated

from these relaxation matrix parameters and goes as the inverse of the sum of the ρ with

all possible σ rates.
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which gives,
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5.4  Measured NOE volumes and the relaxation matrix

Measurement of the homonuclear relaxation matrix by NMR comes from the

interpretation of the volume intensities from NOESY experiments.  In fact, the volume

matrix (V) is fundamentally related to the relaxation matrix in that they are of the same

dimension (both are NxN with N equal to the number of protons in the molecule).  The

diagonal elements of the relaxation matrix correspond to the autopeaks of the volume

matrix, and the off-diagonal elements of the relaxation matrix correspond to the

crosspeaks of the volume matrix.  The two are related by the following equation,

]exp[)0()( mixmix tt RVV = . 5.29

With V(0) being the intensities of the autopeaks at a mixing time of 0.

The power of the relaxation matrix R comes from the fact that it offers a way of

calculating the intensities of a NOESY spectrum by simultaneously solving all the

relaxation rate equations for every nucleus.  If one assumes that the rate matrix truly

represents all the relaxation properties of the system, it is theoretically possible to back-

calculate NOE intensities from a molecular structure model.

5.4.1  Mathematic considerations

As discussed previously, the intensities of all resonances in the NOESY spectrum

are represented by an NxN matrix V(tm), with the intensity of the autopeaks as the Vi,i

elements and the crosspeaks as the Vi,j(i≠j) elements.  The zero-time intensity matrix V(0)
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is a matrix with zero value off-diagonal terms and diagonal terms which represent the

intensity of the autopeaks at a tmix = 0.

This matrix equation can be solved by diagonalizing the rate matrix R to

determine the eigenvalue matrix ΛΛ, and the corresponding eigenvector matrix ΧΧ (see

appendix 5.6.3 on solving simultaneous rate equations).  This leads to the following,

1)exp()0()( −⋅Λ−⋅= XXVV mixmix tt , 5.30

that can be used to directly calculate the intensity matrix V.

It is apparent that this “relaxation matrix” method of predicting NOE volumes

will only be as successful as the model used in building the relaxation rate matrix R.  It is

in this matrix that any and all assumptions made about the relaxation processes of the

system are placed.  In fact, as discussed previously, any assumptions in the relaxation

theory arise from the model used to build the spectral density function.

Thus far it has been assumed that isotropic motion can adequately describe the

rotational diffusion of the molecule.  This assumption, however, is not true for molecules

with extended hydrodynamical shapes such as DNA.  The rotational dynamics of these

molecules cannot be accurately described using the isotropic definition of the spectral

density function.

5.5  Anisotropic molecular tumbling

 A molecule undergoing anisotropic molecular tumbling, such as a long thin

cylinder, will actually have two correlation times describing its motion; one about the

short axis of rotation (ts) and one about the long axis (tl) of rotation.  Unlike the isotropic

dipolar interactions, the effective correlation time any particular pair of nuclei experience

will be dependent on the angle they make with respect to the principal axis of rotation.
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If, for instance, an isolated pair of nuclei form a vector that lies parallel to the

principal axis of rotation, the dipolar interactions they experience will be independent of

the rotation about the principal axis and will be described by the short axis rotation.

However, an isolated pair of nuclei that form an interaction vector that lies perpendicular

to the principal axis of rotation will experience some geometric mean of the long and

short axis rotation.

This angular dependence of the correlation time for a pair of dipoles in an

anisotropically rotating molecule must be represented in the definition of the spectral

density function.

5.5.1  The spectral density function for anisotropic rotation

Woessner (1962) derived the spectral density function for an anisotropically

rotating molecule.  The derivation will not be presented here, as it is rather lengthy.  This

is a summation of the results,

J(ω) = a1J(ω,τ1) + a2J(ω,τ2) + a3J(ω,τ3), 5.31

where,

J(ω, τ) = τ/(1 + ω2τ2) 5.32

and the amplitudes, ai are given by,

a1=0.25 (3 cos2β - 1)2 5.33

a2=3 cos2β sin2β 5.34

a3=0.75 sin4β. 5.35

The angle β is the angle the AB vector makes with the principal axis (see appendix 5.7.2

for a discussion of finding this axis vector by calculating the inertia tensor) of the

molecule.  The correlation times τ1,2,3 are composite correlation times defined by,
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τ1 = τL 5.36

τ2 = 6τLτS/(τL + 5τS) 5.37

τ3 = 3τLτS/(2τL + τS) 5.38

This new spectral density function can then be used in place of the isotropic

definition to give new equations for the spin-lattice (σAB)and cross-relaxation (ρA) rates

for the elements of the relaxation rate matrix R,

)],2(6),2(6),2(6[9.56 332211
6 tJatJatJarABAB ωωωσ ++= −

)]),0(),0(),0([ 332211 tJatJatJa ++− , 5.39

( )∑
≠

− +++⋅=
)(

332211
6

, ),0(),0(),0(9.565
jij

jiA tJatJatJarρ

( ) +++ ),(),(),( 332211 tJatJatJa ωωω

( )),2(),2(),2( 332211 tJatJatJa ωωω ++ . 5.40



Chapter 5:  “NMR relaxation and anisotropic molecular tumbling” 184

5.6  Discussion
The NMR theory for understanding homonuclear dipolar relaxation has been

presented in this chapter.  The rotational tumbling rate of a molecule is an important

component of this dipolar relaxation process, as it is the principal mechanism that induces

the fluctuating magnetic fields responsible for dipolar relaxation.  An accurate description

of the rotational motion of a molecule is thus necessary in order to interpret any

experimental manifestations of the dipolar relaxation.

The NOE is an important probe of molecular structure because the intensity of the

NOE is related to the spatial proximity between the two nuclei.  The NOE arises as a

consequence of dipolar relaxation, and as such, it is important for the interpretation of

NOE data that the molecular tumbling of the molecule be understood.  A measured NOE

between two nuclei can only be interpreted as a distance restraint in the context of a

rotational dynamics model.  For nucleic acids, a description of this rotational dynamics as

isotropic may not be adequate, and the spectral density function proposed by Woessner

(1962) is preferred.

This chapter is presented as the theoretical basis for the next few chapters, which

will discuss the use of these theories in the simulation of NOE intensities from structural

and dynamical models as well as their use in methods of structural refinement.



Chapter 5:  “NMR relaxation and anisotropic molecular tumbling” 185

5.7  References

Abragam A.  1961.  Principles of nuclear magnetism.  Oxford: Clarendon Press.

Abragam A, Pound RV.  1953.  Influence of Electric and Magnetic Fields on Angular
Correlations.  Physical Review  92:943-962.

Bloembergen N, Purcell EM, Pound RV.  1948.  Relaxation Effects in Nuclear Magnetic
Resonance Absorption.  Physical Review  73:679-712.

Debye P.  1929.  Polar Molecules.  New York: Dover.

Eigen M, DeMaeyer L.  1963.  "Relaxation Methods". In: Friess, Lewis, Weisberger, eds.
Technique of Organic Chemistry.  New York:  Interscience.  pp. 895-1051.

Ernst RR, Bodenhausen G, Wokaun A.  1987.  Principles of nuclear magnetic resonance
in one and two dimensions.  Oxford: Oxford University Press.

Hennel, Klinowski.  1993.

Keepers JW, James TL.  1984.  A theoretical study of distance determinations from
NMR.  Two-dimensional nuclear overhauser effect spectra.  J. Mag. Res.  57:404-
426.

Marion JB, Thornton ST.  1965.  Classical Dynamics of Particles & Systems.  New York:
Academic Press.

Schmidt-Rohr K, Spiess HW.  1994.  Multidimensional Solid-State NMR and Polymers.
New York: Harcourt Brace.

Solomon I.  1955.  Relaxation Processes in a System of Two Spins.  Physical Review
99:559-565.

Woessner DE.  1962.  Nuclear spin relaxation in ellipsoids undergoing rotational
brownian motion.  J. Chem. Phys.  37:647-654.



Chapter 5:  “NMR relaxation and anisotropic molecular tumbling” 186

5.8  Appendix

5.8.1  Cross relaxation rate constant calculation:

The cross-relaxation rate constant, q, is often represented as the value 56.9, I often

wondered from where that number came.  Relaxation theory gives us the constant qAB,

which can be derived from magnetic point charges,

2

6

222

410
1







=

π
µγγ oBA

AB r
q

h
5.A.1

with,
J = Joules (kg⋅m2⋅s-2)
T = tesla (kg⋅s-2⋅A-1)
γH = gyromagnetic ratio for proton

= 26.7520x107 (rad⋅T-1 ⋅s-1 or rad⋅kg-1⋅s2⋅A⋅s-1)
h = planck’s constant

= 6.626208x10-34 (J⋅s)/2π
= 1.054593x10-34 (kg⋅m2⋅s-2⋅s)

µo = permeability constant
= 4π⋅1x10-7 (kg⋅m⋅s-2⋅A-2)

r = distance between the spins (Å or 1x10-10 m)

The number 56.9 is derived,
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5.8.2  Determining the principal axis: the inertia tensor calculation

Determining the principal axis of rotation for a hydrodynamical particle is of

fundamental importance for the calculations involving NMR relaxation of anisotropically

rotating molecules.  Ideally, it is the diffusion tensor that would give the best measure of
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this axis.  However, the diffusion tensor is quite complicated in that it requires knowledge

about the frictional components of the solvent and solute.  The inertia tensor, on the other

hand, is a simpler calculation and is probably very accurate in predicting the principal

axis of rotation in most cases.  The inertia tensor requires only knowledge of the structure

(or structural model) and masses of the atoms of the molecule in question.

The inertia tensor is an important relation in rotational dynamics.  For example,

angular momentum (L) is related to angular velocity (w) by means of the inertia tensor,

wIL ⋅= }{ , 5.A.2

and torque (ΓΓ) is related to angular acceleration (αα) by the inertia tensor,

ΓΓ={ΙΙ} ⋅αα. 5.A.3

In a sense, the inertia tensor relates rotational variables much like mass relates non-

rotating variables (P=mv and F=ma).  The inertia tensor is a measure of how much

“apparent rotational mass” an object has.

The inertia tensor is a 3x3 matrix in which the nine elements are composed of the

X,Y or Z cartesian coordinates of a particle α and the distance from that particle to the

center of mass of the object, rα.  (Read chapter 10 of Marion and Thornton’s “Classical

Dynamics” book (1965) if you are interested in the derivation of the equations for the

inertia tensor).
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The inertia tensor is characterized by diagonal elements I11, I22 and I33 that are known as

the “moments of inertia” and the 6 independent off-diagonal elements, I12, I13, etc, are
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termed the “products of inertia” (notice that this matrix is Hermitian, I12 = I21).  The

initial Cartesian coordinate system (x,y,z) may be of arbitrary origin as shown in figure

5.14 A, meaning the object can be displaced to any position without changing the result

of the inertia tensor calculation.

Figure 5.8  The inertia tensor and a symmetrical top

The “principle axes of inertia” is defined as the axis coordinate system (x’,y’,z’)

in which the off diagonal terms for {I} vanish, Ii≠j=0.  This diagonalized inertia tensor, I’,

is calculated from the inertia tensor by finding a transformation matrix, λ, such that,

1−= λλII' . 5.A.5

When the inertia tensor is transformed in this manner, the three eigenvalues of I, I1, I2

and I3 (solved using methods described in appendix 5.6.3) are known as the “principle

moments of inertia”.  Examination of the relative values of I1, I2 and I3 gives much

information on the shape of the body.  If I1=I2=I3 the body is a “spherical top”.  If

I1=I2≠I3 then the body is termed a “symmetrical top” (DNA and other cylindrical

molecules fall into this category).  Finally, if I1=0 and I2=I3 then, for instance, the body

may be two point masses connected via a weightless shaft, this is known as a “rotor”.
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5.8.3  Solving coupled rate equations, eigenvalues and eigenvectors

Many mathematical problems deal with solving simultaneous rate equations, such

as chemical exchange and NMR relaxation.  The concentration (or magnetization) of a

species may be dependent on the interactions of many other species which are all

undergoing rate processes.  This appendix is a short discussion of how to exactly solve

the simple case of chemical exchange in a two species system as well as the methods of

solving N species problems via approximate methods.

The simplest case of two species in chemical exchange is presented (Eigen &

DeMaeyer, 1963; discussions with Pat Vaccaro & Donald Crothers).  Assume two

chemical species, A and B, which can interconvert at a rate of kΑΒ in which both species

also undergo an external decay with rates kAA and kBB respectively.  This is analogous to

the situation of relaxation processes in NMR (think cross-relaxation and T1).

A B
k

AB

k
BA

k
AA k

BB

The kinetic differential equations for the chemical exchange process would be

(assuming kAB = kBA),

][])[(][][][
][

BkAkkBkAkAk
dt
Ad

ABAAABABAAAB ++−=+−−= , 5.A.6

][])[(][][][
][

AkBkkAkBkBk
dt
Bd

ABBBABABBBAB ++−=+−−= , 5.A.7

which can be rewritten in matrix form,
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][

][

)(

)(

][

][

B

A

kkk

kkk

B

A

dt
d

BBABAB

ABAAAB

+−+
++−

= . 5.A.8

Symbolically, this matrix equation becomes,

RCC =
dt
d

, 5.A.9

with a “concentration matrix” C and a “rate matrix” R.  Solving matrix equations of this

type requires diagonalization of the matrix R to determine a set of eigenvalues, which can

then be placed back into equation 5.19 to determine the values for C, the eigenvectors.

All matrix operators, such as R, can be diagonalized by a similarity

transformation T,

λ=− RTT 1 , 5.A.10

in which λ is a diagonal matrix (a diagonal matrix is any matrix with off-diagonal term of

zero).  The transformation matrix is unique in that,

ETTTT == −− 11 5.A.11

where E is the unity matrix (a diagonal matrix with diagonal elements Ei,i=1 and off-

diagonal elements Ei,j(i ≠j)=0).

Define a new matrix, y, as,

yCT =−1 . 5.A.12

Multiply both sides of equation 5.19 by T-1 and place the unit matrix between R

and C to give,

CRTTTCT 111 −−− =
dt
d

5.A.13

Now, using the definitions for λλ and y found in equations 5.A.10 and 5.A.12 respectively,
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iiidt
d

yy λ= , 5.A.14

which have solutions of,

)exp(0, iii tyy λ−= 5.A.15

A new vector, C’, is defined as MCM-1 and is known as the normal coordinate.  Which

yields,

'' CC λ=
dt
d

, 5.A.16

with specific values of,

'

'
2

'
1

'

'
2

'
1

NN C

C

C

C

C

C

dt
d λ= . 5.A.17

The matrix matrix can be expanded, term for term, as,

)exp(

)exp(

)exp(

''

'
2

'
2

'
1

'
1

tCC

tCC

tCC

NN λ

λ

λ

−=

−=

−=

5.A.18

The process of diagonalizing a matrix is accomplished by setting the determinant

of the matrix to zero and solving for λ,

0
)(

)(
det)det( =

−+−
−+−

=
λ

λ

BBABAB

ABAAAB

kkk

kkk
R 5.A.19

2)(])(][)([ ABBBABAAAB kkkkk −−+−−+− λλ =0 5.A.20

0)2(2 =++++++ BBABBBAAABAABBABAA kkkkkkkkk λλ

Which gives (using the quadratic equation to solve for the roots of λ) the eigenvalue (or

only non-trivial) solutions of the problem (in this case, two, λ1 and λ2),
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2

]24[)2( 2/1222

21
BBBBAAABAABBABAA

and

kkkkkkkk +−+±++−
=λ . 5.A.21

The coefficients from the vector matrix, or the eigenvectors, can now be

determined by substitiuting each eigenvalue back into the matrix equation RT=0,

0

0

)(

)(

1

1

1

1 =
−+−

−+−

b

a

BBABAB

ABAAAB

C

C

kkk

kkk

λ
λ

, 5.A.22

and solving the equations for Ca1 and Cb1 such that [A](t)=Ca1exp(-λ1t) and

[B](t)=Cb1exp(-λ1t).

This approach gives an exact solution to the problem of two species chemical

exchange, however, as the number of coupled equations increase, it becomes exceedingly

difficult to solve the matrices exactly and methods of approximation are required.  These

approximation approaches include the Jacobi rotation-transformation matrix method and

those available in the LAPACK software for computers.

5.8.4  Calculation of two-spin state populations

This mathematical transformation is the algebraic substitutions of equations 5.8-

5.13.  Start from the definitions for the time-dependent change in population (equations

5.8-5.11) and for the NMR observables, Iz,A and Iz,B (equations 5.12 and 5.13).  The time

derivative of equation 5.14 gives,

( ) ( )αααββαββ NNNN
dt
d

KI
dt
d

Az −−+=, , 5.A.23

dt

dN

dt

dN

dt

dN

dt

dN

dt

dI
K Az αααββαββ −−+=, . 5.A.24

For which the definitions of dNββ/dt, etc., given in equations 5.8-5.11 are substituted,
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ααβααβββ NWNWNWNWWW
dt

dI
K ABAB

B
AB
A

AB
B

ABAB
A

Az
211121

, )( +++++−=

ααβααβββ NWNWNWWWNW AB
B

ABAB
B

ABAB
A

AB
A 101011 )( ++++−+

[ ]ααβααβββ NWNWWWNWNW AB
A

AB
A

ABAB
B

ABAB
B 110101 )( +++−+−

[ ]ααβααβββ NWWWNWNWNW AB
A

ABAB
B

AB
A

AB
B

AB )( 121112 ++−++− 5.A.25

Grouping the Nββ, Nαβ, Nβα and Nαα terms respectively,

( ) ββNWWWWWW
dt

dI
K ABAB

B
AB
A

AB
B

ABAB
A

Az
211121

, −−+−−−=

( ) αβNWWWWWW AB
B

ABAB
B

ABAB
A

AB
A 101011 −−−−−+

( ) βαNWWWWWW AB
A

AB
A

ABAB
B

ABAB
B 110101 −+++++

( ) ααNWWWWWW AB
A

ABAB
B

AB
A

AB
B

AB
121112 +++−++ . 5.A.26

( ) ( ) αβββ NWWNWW
dt

dI
K AB

B
ABAB

B
ABAz

1012
, 2222 −−+−−=

( ) ( ) ααβα NWWNWW AB
B

ABABAB
B 1201 2222 ++++ . 5.A.27

Factoring out the common terms,

( )( ) ( )( )αββαββαα NNWWNNWW
dt

dI
K AB

B
ABAB

B
ABAz −++−+= 1012

, 22 . 5.A.28

The sum of equations 5.10 and 5.11 gives,

( ) BzAz IINN ,,2 +=− ααββ , 5.A.29

whilst the difference of the two gives,

( ) BzAz IINN ,,2 −=− αββα . 5.A.30

Substitution of equations 5.36 and 5.37 into 5.35 yields,
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( )( ) ( )( )BzAz
AB
B

AB
Bzaz

AB
B

ABAz IIWWIIWW
dt

dI
K ,,10,,12

, −+−++−= , 5.A.31

( ) ( ) Bz
ABAB

Az
ABAB

B
ABAz IWWIWWW

dt

dI
K ,20,012

, 2 −+++−= . 5.A.32

The same treatment will yield the following for dIz,B/dt,

( ) ( ) Az
ABAB

Bz
ABAB

A
ABBz IWWIWWW

dt

dI
K ,20,012

, 2 −+++−= . 5.A.33


