ABSTRACT

NMR Studies of the Spliced Leader RNA from *Crithidia* fasciculata and *Leptomonas collosoma*. Hydrodynamic Properties of Nucleic Acids by NMR.

Jon Lapham

May, 1998

The first part of this thesis examines the Spliced Leader RNA (SL RNA) from two species of trypanosome, *Crithidia fasciculata* and *Leptomonas collosoma*. Unlike other eukaryotes, trypanosomal genes lack internal introns, rather, they are excised by *trans*-splicing to the SL RNA during pre-mRNA processing. Previous studies have shown that the SL RNA can adopt two alternate secondary structures, form 1 and form 2, and it has been suggested that the RNA may be involved in a conformational switch that could regulate the *trans*-splicing event. Thus, we set out to investigate both the form 1 and form2 secondary structures of the SL RNA. The *in vitro* secondary structure of the *C. fasciculata* SL RNA was found to be in the form 2 and the *L. collosoma* was found to be in the form 1. The form 1 conformation was examined in detail and was found to contain an interesting tri-uridine hairpin loop with the first and third uridine base paired.

The second part of this thesis examines the hydrodynamical properties (translational and rotational diffusion) of nucleic acids using NMR techniques.

The translational diffusion constants for nucleic acids of different sizes and shapes were measured using the pulsed field-gradient NMR technique. The diffusion constants measured in this way were found to be in good agreement with the predicted values using hydrodynamic theory and to the previously published results from other experimental techniques. This technique is shown to be an effective method for solving one of the more common problems in RNA NMR spectroscopy, knowing whether a particular sample is monomeric or not. The rotational diffusion constants for nucleic acids of different sizes and shapes were examined theoretically and experimentally by NMR via the nuclear Overhauser effect (NOE) and the relaxation matrix. The theory of the hydrodynamics and relaxation matrix calculations are presented in the context of examining molecules that may undergo anisotropic rotation. The results demonstrate that there is a predictable effect on the measured NOEs because of rotational anisotropy of extended shape molecules, such as long DNA fragments.

NMR Studies of the Spliced Leader RNA from *Crithidia* fasciculata and Leptomonas collosoma. Hydrodynamic Properties of Nucleic Acids by NMR.

A Dissertation

Presented to the Faculty of the Graduate School

of

Yale University

in Candidacy for the Degree of

Doctor of Philosophy

by

Jon Lapham

Dissertation Director: Dr. Donald M. Crothers

May, 1998

© 1998 Jon Lapham

All rights reserved

For Renata.

And my family,

Mom, Dad, Brian and Laura.

Acknowledgements

As I look over this thesis, I realize that I am unusually indebted to a large number of people for helping me with my research project. Without the help these people have shown me thorough the years the research presented in this thesis would not have been possible.

Let me begin by thanking my advisor and mentor Prof. Donald M. Crothers. Don is one of those people that you get the feeling knows some truism of life that the rest of us just don't understand. He is one of the only people I have ever met who portrays that most rare of qualities, confidence in others. I really think that is his secret, he *honestly* believes in his students. What a standard for us to emulate!

The other members of my committee are Profs. Peter Moore, Jim Prestegard and Kurt Zilm. Thank you all for reading this manuscript and for your comments and suggestions along the way. I have had the pleasure of writing a paper with Prof. Moore, and I would just like to say that it was a truly rewarding experience. He believes in brevity and clarity above all else in writing, a lesson I hope I have learned. It is difficult, but sometimes (as I like to say) less is more!

I inherited the Spliced Leader RNA project from Karen LeCuyer and Ken Harris and I would like to thank them both for setting the biophysical groundwork for the project. If it were not for Karen, we would not be talking about the form 1 and form 2 secondary structures of these RNAs! Ken is one of the nicest people I have ever had the pleasure to work with, and I hope that one day soon he is a practicing physician in New York City (a dream come true for him).

I would like to thank Jing Xu for collaborating with me on the RNase H cleavage project (Chap. 2). This was the closest thing I ever came to doing "molecular biology", and she helped me to survive unscathed. I also had the pleasure of interacting with Yi Tao Yu in Joan Steitz's lab when we were trying to figure out where RNase H *really* cuts RNA. (PS: It turns out that we were both correct!)

Renata Kover had the original idea and explained the theoretical background for using the isotope selection experiments to distinguish parts of isotope labeled samples (Chap. 3). She has an unusual ability to understand concepts outside her field and to be able to convey them to others to help them accomplish tasks. All the data from the isotope-selection experiments came from samples prepared by Gauri Dhavan. Getting the pulse sequences to work perfectly was an extraordinarily tedious task, and I couldn't have asked for a better partner then Gauri during the process. Oh yeah, I shouldn't forget to mention that Kevin (spelled with a z!) MacKenzie and John Marino were very helpful with ideas concerning the pulse sequence programming of these experiments.

Chapter 4 is chock full of collaborative efforts. I must first say that the idea of performing the diffusion measurements on DNA came to me whilst listening to a talk Mike Andrec gave on his proton exchange experiment, so, thanks Mike! Jason Rife has the dubious honor of being the first person I found that had an RNA sample that existed as both a monomer and dimer. I wanted data on that system! It turns out that I was very lucky to work with him, because I have very much benefited from the many scientific discussions we have had over the years. Thanks Jason. (and yes, I know that I am "preaching to the choir", but I just like to argue...). The D14 sample presented in chapter 4 was kindly provided by Dan Zimmer, thanks!

If I understand anything of the theoretical aspects of NMR, I owe it to a number of people. It should be a requirement of everyone at Yale to take Kurt Zilm's spectroscopy course, I give the class a ten on the Seminole-Head (SH) rating system. I will always remember the rotating frame demonstration... It should NOT be a requirement that everyone at Yale take Pat Vaccaro's Quantum Chemistry course, but DAMN did I learn a lot about quantum mechanics (and indirectly, about NMR), I also give his class a ten SHs. Pat, you will no longer have to fear me starting conversations with you by saying, "I have this equation..." (at this point he would look around like a hunted animal and try to escape). Finally, I would like to thank Don Crothers (once again) who has such an intuitive understanding of all things physical that his nonequations based explanations of NMR theory usually had the effect of me actually understanding things.

The inertia tensor calculations are compliments of Charlie Schmuttenmaer, thanks for the help!

Much of the data analysis presented in this thesis required writing a number of computer programs. When I came to Yale, I had never even used email, let alone

programmed a computer. Since then I have, hopefully, picked up some of the rudimentary aspects of programming from a number of people. To the Perl people:

```
%perl_people = (
    "Dr. Jason Kahn" => "scalars are good",
    "Dr. Mike Andrec" => "lists are better",
    "Dr. Dave Schweizguth" => "associative arrays are best",
);
@people = keys %perl_people;
foreach $person ( @people ) {
    print "I learned that, in Perl, ";
    print $perl_people{$person};
    print " from $person\n";
}
```

To the C (C++) people:

```
#include <iostream.h>
#include "myalloc.h"
main () {
    char *Person1 = NEW1D_C( 16 );
    strcpy(Person1, "Dr Klaus Fiebig");
    char *Person2 = NEW1D_C( 16 );
    strcpy(Person2, "Dan Rosewater");
    char *VARptr;
    char VAR[9] = "pointers";
    VARptr = VAR;
    cout << "Thank you " << Person1 << " and " << Person2 << endl;
    cout << "and working me how to do dynamic memory allocation\n";
    cout << "and working with " << VARptr << endl;
}</pre>
```

Finally, but certainly not the least, I would like to thank my friends and family. I was going to rate everyone the SH rating system described before. It turns out, however, that everyone seems to have fallen into two categories, those rated with 10 SHs (Mom, Dad, Brian, Laura, Renata and Chris) and those with 9 SHs (all others). Hmmm, I guess the SH rating system won't be useful after all.

Mom, Dad, thank you for your support over the eons that I have been in graduate school, it meant more than you will know. To Laura "I can't get enough of chemistry" Lapham and Brian "one day I am going to be bigger than you so I can beat you up" Lapham, it seems that under my expert older-brother supervision you have both turned out to be okay. I hope one day we will live nearer each other, because I actually like to hang out with you guys!

To adequately express my gratitude to the friends I have made here at Yale would require writing another volume to this thesis. I cannot mention everyone, but I must mention the following people. When I rotated in the Crothers lab I worked for one John Marino. For my "project" we synthesized some RNA and collected a 1D imino proton spectrum for it on the 490 MHz NMR. This was back in the days when the 490 was accessed using what amounts to a typewriter (no computer screen). Anyway, John, thanks for what ended up being the beginning of a great friendship. Matthew P. Augustine, this is a transcript of the first conversation I had with you, "Hi, my name is Jon", said I, "Did I ask?!", replyeth Matt. You haven't stopped being a bastard ever since, and I thank you for it. You are an oasis of "state school-ness" in an ocean of "private school". I am looking forward to the first FSU – PSU Rose Bowl game! Who do those Big-Eleven, PAC-10 teams think they are? Of course, I hope it ends in a tie. Rich Roberts, I enjoyed those late nights dog fighting on the SGIs while you collected stopped-flow data. I will (I swear) get out to California to visit you and Maja one day. Dan Zimmer, you have the unfortunate "honor" of being the guy I usually bounce my "great ideas" off of, thanks for listening to them without laughing too much! (I will do acrylamide-based NMR, I swear it!). Jason Kahn, thanks for being smart as hell and a nice guy (hi Effie and Evan!). To Anil and the rest of you damn Canadians, I am happy to say that you NEVER "checked me into the boards" (or whatever it is you say when you know how to speak hockey-ese).

To the other members of the Crothers lab whom I have known over the years, thank you (I would list you all, but damn this acknowledgement is getting pretty long as it is). Oh, what the hell, Razmic, Rosa, Karen, Claudia, Bob, Grace, Ernie, Kate, Ramesh (Clawed thanks you too), Ayesha, Mahdu, Andej, Julie (RNA diffusion woman), Susan, Anna, Dafna, Steve, Jing, Ken, Giorgi, Jayshree, Min, Jessica, Camille, Kevin and Sheela (Kanodia.mac).

To the other people in the various labs in the department, you have made my stay here a memorable one. There are WAY too many of you to mention them all, but thank you.

Chris... Yup... Well then.

Renata Kover may be the only person who has (or will ever) read every single word of this thesis. She, more than anyone else, helped me scientifically and personally. Renata, I love you, thanks.

TABLE OF CONTENTS

CHAPTER 1 "NMR STUDIES OF THE SPLICED LEADER RNA FROM CRITHIDIA FASCICULATA AND LEPTOMONAS COLLOSOMA"	1
	<u>ר יייי</u>
1.1 SUMMARY	·····2
1.2 INTRODUCTION AND BACKOROUND.	2 2
1.2.1 Trypunosome biology	3 2
1.2.2 The secondary structure of the SL BNA	5 6
1.2.5 The secondary structure of the SL KIVA	0
1.2.4 170jeti gouis	ج۶ 11
1.3 1 Choice of L collosome experimental samples	1 1
1.3.2 Choice of C fasciculate experimental samples	13
1.3.2 Choice of C. Tasecondary structure of nucleic acids by NMR	11
1.3.4 The in vitro secondary structure of the C fasciculata SL RNA	15
1.3.5 The in vitro secondary structure of the L collosoma SL RNA	19
1.3.6 Salt mediated conformational change in the L collosoma form 1 hairpin	31
1.3.6 Evidence that the rLC13 low and high salt samples are monomeric	37
137 Assignments of the non exchangeable protons for rLC13	41
1 4 DISCUSSION	49
1.4.1 The secondary structures of the C. faciculata and L. collosoma SL RNAs	
1.4.2 The L. collosoma "tertiarv" structure	49
1.4.3 Form 1 hairpin structure	51
1.5 MATERIALS AND METHODS	54
1.5.1 Chemical synthesis of RNA	54
1.5.2 Enzymatic synthesis of RNA	54
1.5.3 RNaseH cleavage	55
1.5.4 List of samples	55
1.5.5 Optical equilibrium-melting curves	56
1.5.6 NMR Methods	57
1.6 References	60
CHAPTER 2 "AN RNA ENDONUCLEASE"	64
2.1 SUMMARY	65
2.2 INTRODUCTION	65
2.3 Results	70
2.3.1 Enhancement of transcription yield with a leader sequence	70
2.3.2 Yield and site specificity of the cleavage reaction	70
2.3.3 Cleavage on a solid state matrix	73
2.3.4 NMR sample preparation	74
2.3.5 NMR spectroscopy	76
2.4 DISCUSSION	78
2.4.1 The religation of RNA cleavage products	78
2.4.2 Detection of 2'-O-methyl sites in RNA	79
2.4.3 The RNase H enzyme source affects the cleavage position	80

2.5 MATERIALS AND METHODS	83
2.5.1 Oligonucleotide synthesis	83
2.5.2 Enzymes	83
2.5.3 T7 RNA Polymerase Transcriptions	84
2.5.4 ¹⁵ N NTP isolation and purification	84
2.5.5 Cleavage of RNA with the 2'-O-methyl RNA/DNA chimeras in solution	86
2.5.6 Cleavage of RNA with an immobilized biotin labeled 2'-O-methyl chimera	ı 86
2.5.7 Recycling the B2'LDR column	87
2.5.8 Analysis of RNA After RNase H Cleavage	88
2.5.9 NMR Procedures	88
2.6 References	90
CHAPTER 3 "APPLICATION OF ISOTOPE FILTERED NMR EXPERIME	NTS
FOR NUCLEIC ACIDS"	93
3.1 SUMMARY	94
3.2 INTRODUCTION	94
3.2.1 Isotope selection by NMR	95
3.2.2 Isotope filtered NOESY	97
3.2.3 Isotope filtered pulsed field-gradient stimulated echo	100
3.3 Results	101
3.3.1 Exchangeable protons	101
3.3.2 Non-exchangeable protons	104
3.3.3 PFG diffusion measurements	106
3.4 DISCUSSION	110
3.5 MATERIALS AND METHODS	112
3.5.1 DNA sample preparation	112
3.5.2 Protein sample preparation	112
3.5.3 NMR spectroscopy: filtered NOESY	113
3.5.4 NMR spectroscopy: filtered PFG-STE	113
3.6 APPENDIX	115
3.6.1 Isotope filtered jump-return spin-echo ID pulse sequence	115
3.6.2 Isotope filtered watergate NOESY 2D pulse sequence	117
3.6.3 Isotope filtered ¹³ C 1D pulse sequence	120
3.6.4 Isotope filtered ¹³ C 2D NOESY pulse sequence	122
3.6.5 Felix macros for processing NOESY subspectra	125
3.7 K EFERENCES	127
CHAPTER 4 "MEASUREMENT OF DIFFUSION CONSTANTS FOR NUCL	LEIC
ACIDS BY NMIR [®]	129
4.1 SUMMARY	130
4.2 INTRODUCTION	130
4.2.1 Hydrodynamics theory	133
4.2.2 NMR theory	134
4.3 RESULTS	138
4.3.1 NMR Experimental	138
4.3.2 DNA	140
4.3.3 RNA	145

4.4 DISCUSSION	147
4.4.1 DNA: Comparison to other techniques	147
4.4.2 RNA	148
4.5 MATERIALS AND METHODS	149
4.5.1 Sample preparation	149
4.5.2 Solvent viscosity	
4.5.3 NMR calibration	
4.5.4 NMR experimental	
4.6 APPENDIX	
4.6.1 Varian pulse sequence "pfg_diffusion.c"	157
4.6.2 Felix95 diffusion processing macro "diffusion.mac"	158
4.6.3 xy2xm - process diffusion data integration values	160
4.6.4 xm2ds – perform a quick linear regression on a ".xm" file	161
4.7 References	
CHAPTER 5 "NMR HOMONUCLEAR DIPOLAR RELAXATION T	HEORY:
ANISOTROPIC MOLECULAR TUMBLING"	
	1.60
5.1 SUMMARY	
5.2 INTRODUCTION	
5.3 HOMONUCLEAR NMR RELAXATION THEORY	
5.3.1 The spectral density function for isotropic rotation	1/1
5.3.2 Transition rates	
5.3.3 The relaxation rate matrix	1/8 ۱۹۵
5.4 MEASURED NOE VOLUMES AND THE RELAXATION MATRIX	
5.5 ANISOTRODIC MOLECUL AD TUMPLING	<i>100</i> 191
5.5 1. The spectral density function for anisotropic rotation	101 182
5.6 Discussion	102 184
5.7 DESCUSSION	104 185
5.8 Δ DDENDIV	185
5.8.1 Cross relaxation rate constant calculation:	
5.8.2 Determining the principal axis: the inertia tensor calculation	180 186
5.8.3 Solving coupled rate equations eigenvalues and eigenvectors	180 189
5.8.4 Calculation of two-spin state populations	
CHAPTER 6 "EXPERIMENTAL EVIDENCE OF THE EFFECT OF	40.
ANISOTROPIC ROTATION ON NOE INTENSITIES"	
6.1 SUMMARY	
6.2 INTRODUCTION	
6.2.1 Hydrodynamics theory for rotational diffusion rates	
6.2.2 Experimentally determined correlation times for DNA	
6.2.3 Experimental approach	
6.2.4 Choice of samples	
6.3 Results	
6.3.1 Cross-relaxation rate simulations for anisotropic rotation	
6.3.2 R14 sample	211
6.3.3 D12 sample	214

6.3.4 D24 sample	216
6.4 DISCUSSION	218
6.5 MATERIALS AND METHODS	221
6.5.1 Sample preparation	221
6.5.2 NMR experimental	222
6.5.3 Volumes lists	223
6.5.4 R14 structure	229
6.5.5 D12 and D24 structure	230
6.5.6 YARM scripts	231
6.6 References	236
CHAPTER 7 "YARM"	238
7.1 SUMMARY	239
7.2 INTRODUCTION AND BACKGROUND	239
7.3 YARM	242
7.3.1 Overview of simulating NOE initensities	242
7.3.2 Statistical analysis of volume sets	245
7.3.3 Model Validation	246
7.3.4 Model refinement	252
7.3.5 Other software packages	255
7.3.6 Source code: nmr_relax.c and nmr_relax.h	256
7.3.7 Source code: structure.c and structure.h:	265
7.3.8 Source code: structure_refine.c	271
7.4 References	282
CHAPTER 8 "COMPUTER PROGRAMS"	
8.1 X-PLOR UTILITIES	286
8.1.1 "seq" file format	287
8.1.2 cdih_make - create XPLOR dihedral files	289
8.1.3 planar_make – create XPLOR planar restraint files	294
8.1.4 <i>dm</i> – measures the distances between protons in pdb files	297
8.1.5 noe_in – converts the output of dm to an XPLOR input format file	299
8.1.6 noe_hbond_make – builds an XPLOR hydrogen bonding restraint file	300
8.1.7 cdih_measure – measures the dihedral angles of nucleic acid pdb files	303
8.2 Hydrodynamics	311
8.3 MOMENT OF INERTIA	318
8.3.1 Examples	318

LIST OF FIGURES AND TABLES

CHAPTER 1

Figure 1.1 mRNA processing by cis-splicing	4
Figure 1. 2 mRNA processing by trans splicing	5
Figure 1. 3 L. collosoma Form 2 secondary structure	6
Figure 1. 4 L. collosoma Form 1 secondary structure	7
Figure 1.5 Derivative UV melting curve of the 60 nt 5' half of the L collosoma SL RN	A
	8
Figure 1. 6 Sequence analysis of trypanosomal SL RNAs	9
Figure 1.7 NMR samples	12
Figure 1.8 Consensus "central core" nucleotides in form 1 and form 2	15
Figure 1.9 C. fasciculata 5' half SL RNA form 1 and form 2 structures	16
Figure 1.10 H ₂ O NOESY spectrum of rCF55	17
Figure 1.11 rCF55 ¹ H ¹⁵ N HMQC	18
Figure 1.12 HMQC comparison between rCF55 and form 2 hairpin	20
Figure 1.13 C. fasciculata SL RNA form 1 and form 2 mutant native gels	21
Figure 1.14 Low salt rLC55 imino proton temperature study	23
Figure 1.15 High salt rLC55 imino proton temperature study	24
Figure 1.16 High salt rLC55 derivative UV melts	25
Figure 1.17 rLC55 H ₂ O NOESY	26
Figure 1.18 rLC55 ¹ H- ¹⁵ N HMQC	27
Figure 1.19 Assignment of the rLC55 U35 and U36 iminos	29
Figure 1.20 Comparison of the H ₂ O NOESY for rLC55 and rLC25	30
Figure 1.21 rLC55 cytosine ¹³ C labeled spectra	32
Figure 1.22 2D H2O NOESY of rLC13	33
Figure 1.23 rLC25 salt dependence DQFCOSY data	35
Figure 1.24 rLC13 salt dependence DQFCOSY data	36
Figure 1.25 rLC13 and rLC25 basepairing possibilities for a monomer or dimer	37
Figure 1.26 rLC13 UV melts	38
Figure 1.27 Diffusion rate of rLC13 low and high salt conformations	40
Figure 1. 28 Temperature study of the imino proton from high salt rLC13	42
Figure 1.29 NOESY spectrum of the low salt rLC13	43
Figure 1.30 NOESY spectrum of the low salt rLC13	44
Figure 1.31 NOESY spectrum of the high salt rLC13	45
Figure 1.32 NOESY spectrum of the high salt rLC13	46
Figure 1.33 Imino to non-exchangeable of high salt rLC13	47
Table 1. 1 rLC13 High salt assignments	48
Table 1. 2 rLC13 Low salt assignments	48
Figure 1.34 Specific heat calculation for rLC55	51
Table 1. 3 RNA samples	56

CHAPTER 2

Figure 2.1	RNase H cleavage	position	66
	U		

Figure 2. 2	RNase H cleavage occurs without the 5' 2'-O-methyl RNA	68
Figure 2.3	Synthesis of r3LIG RNA	69
Figure 2. 4	Transcription Comparison: r3lig with rLDRr3lig	71
Figure 2. 5	Site specificity of the cleavage and large scale cleavage	72
Figure 2. 6	Solid State RNase H Cleavage	75
Figure 2.7	2D ¹ H- ¹⁵ N HMQC of r3lig product from the RNase H cleavage	77
Figure 2.8	RNase H cleavage positions for different enzyme sources	80
Figure 2.9	Site specificity of the RNase H cleavage as seen by NMR	81
-		

CHAPTER 3

Figure 3.1	Isotope selection schematic	95
Figure 3. 2	Isotope filtered subspectra	97
Figure 3. 3	Simulated NOESY subspectra for a partially labeled molecule	99
Figure 3. 4	Isotope filtered NOESY pulse sequences	102
Figure 3.7	The isotope filtered PFG-STE pulse sequence	107
Figure 3.8	Protein binding DNA as measured by isotope filtered diffusion	109

CHAPTER 4

Figure 4. 1 PFG spin-echo without translational diffusion	.135
Figure 4. 2 PFG spin-echo with translational diffusion	. 136
Figure 4. 3 PFG-STE (Tanner, 1970) pulse sequence for the diffusion measurements.	. 139
Table 4.1 Measured diffusion constants for all samples	.141
Table 4. 2 Theoretical and experimental self-diffusion constants	. 141
Figure 4. 4 Concentration dependence of D _t and f _t	. 142
Figure 4. 5 Diffusion constant vs temperature	. 144
Figure 4. 6 Diffusion constants for RNA	. 146
Figure 4. 7 Integration of the D12 1D spectrum	.154
Figure 4. 8 Sample experimental data	. 156

CHAPTER 5

Figure 5. 1 Two magnetic nuclei placed in an external B ₀ field	169
Figure 5. 2 Energy diagram for two nuclei of spin ¹ / ₂	170
Figure 5.3 Time-dependent magnetic field fluctuations due to molecular rotation	171
Figure 5. 4 Functions of molecular reorientation	
Figure 5. 5 The NMR relaxation parameters S and r	175
Figure 5.6 Two-spin energy transition rates	177
Figure 5.7 Multiple spin coupling in nucleic acids	178
Figure 5.8 The inertia tensor and a symmetrical top	

CHAPTER 6

Figure 6.1	Definitions of hydrodynamic variables for a cylinder	. 199
Figure 6.2	Theoretically calculated D_r and t_c values for DNA	.201
Figure 6.3	Approximate hydrodynamic dimensions of R14, D12 and D24 samples	. 203

Figure 6.4	14 hairpin	.204
Figure 6.6	D12 and D24 2D NOESY spectra	.206
Figure 6.7	T7 H6 1D slice of 2D NOESY	.207
Figure 6.5	Symmetry in the D12 and D24 samples	.208
Figure 6.8	Hydrodynamic parameters for the D12 and D24 samples	.208
Figure 6.9	Cross-relaxation rate correction factor	.210
Figure 6.10) R14 isotropic correlation time plot	.212
Figure 6.11	R14 anisotropic correlation time "surface plot"	.213
Figure 6.12	2 D12 anisotropic correlation time "surface plot"	.215
Figure 6.13	3 D24 anisotropic correlation time surface plot	.217
Figure 6.14	Normal mode bending motions of DNA	.219
-		

CHAPTER 7

Figure 7.1	YARM data flowchart	244
Figure 7.2	YARM Correlation plots	248
Figure 7.3	The gradient vector	252

CHAPTER 8

Figure 8.1	Definition of torsion angles in nucleic acids	303
Figure 8. 2	Vector representation of the torsion angles	304
Figure 8.3	principal_axis -xy -midas dickerson.pdb	322