ABSTRACT

1) NMR Studies of the Spliced Leader RNA from Crithidia
fasciculata and Leptomonas collosoma.
2) Hydrodynamic Properties of Nucleic Acids by NMR.
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The first part of this thesis examines the Spliced Leader RNA (SL RNA) from
two species of trypanosome, Crithidia fasciculata and Leptomonas collosoma.
Unlike other eukaryotes, trypanosomal genes lack interna introns, rather, they are
excised by trans-splicing to the SL RNA during pre-mRNA processing. Previous
studies have shown that the SL RNA can adopt two alternate secondary

structures, form 1 and form 2, and it has been suggested that the RNA may be
involved in a conformational switch that could regulate the trans-splicing event.
Thus, we set out to investigate both the form 1 and form2 secondary structures of
the SL RNA. Then vitro secondary structure of the C. fasciculata SL RNA was
found to be in the form 2 and the L. collosoma was found to be in theform 1. The
form 1 conformation was examined in detail and was found to contain an

interesting tri-uridine hairpin loop with the first and third uridine base paired.

The second part of this thesis examines the hydrodynamical properties
(trandlational and rotational diffusion) of nucleic acids using NMR techniques.

The transglational diffusion constants for nucleic acids of different sizes and
shapes were measured using the pulsed field-gradient NMR technique. The
diffusion constants measured in this way were found to be in good agreement
with the predicted values using hydrodynamic theory and to the previously
published results from other experimental techniques. This technique is shown to
be an effective method for solving one of the more common problemsin RNA
NMR spectroscopy, knowing whether a particular sample is monomeric or not.



The rotational diffusion constants for nucleic acids of different sizes and shapes
were examined theoretically and experimentally by NMR via the nuclear
Overhauser effect (NOE) and the relaxation matrix. The theory of the
hydrodynamics and relaxation matrix calculations are presented in the context of
examining molecules that may undergo anisotropic rotation. The results
demonstrate that there is a predictable effect on the measured NOES because of
rotational anisotropy of extended shape molecules, such aslong DNA fragments.
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